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ABSTRACT 

A five-month study was performed on an energetic, dissipative beach on a 

climatologically Mediterranean coastline to explore the wind stress and buoyancy 

flux. An eddy covariance system was deployed in the intertidal zone resulting in 

1088 hours of quality-controlled flux observations at elevations of 1, 3, and 6m on 

a sandy beach in Monterey, CA. The wind stress angle relative to the mean wind 

direction varied as much as 31o, representing one standard deviation, with a 

range of ±151o. The variations were dependent on the wind angle relative to the 

swell direction and shoreline, which directed the stress vector to the left for winds 

approaching from 0o>θ>-45o and to the right for winds approaching from -45o>θ>- 

80o, where 0o is onshore. The stress angle was independent of stability, stress, 

and wind speed. Air-ocean temperature differences produced unstable conditions 

88% of the time in contrast to the near neutral conditions that dominate the 

open ocean. Based on flux footprints, the surf zone was found to be a source of 

positive buoyancy and heat flux contributing to the unstable conditions. Minimum 

buoyancy fluxes were observed with the flux footprints that were farther offshore 

centered outside the surf zone, resulting in stable conditions. 
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I. INTRODUCTION 

Wind stress,  , or the transfer of momentum between the atmosphere 

and the underlying ocean has long been recognized as a critical parameter in 

ocean and climate modeling and in the processing of remote sensing satellite 

data. The surface wind stress can be represented through the friction velocity u*  

(Monin and Obukhov 1954), defined as 

  
   au*

2  , (1) 

 

where a  is atmospheric density. This wind stress is therefore dependent on the 

roughness properties of the underlying surface. The ocean, however, is a fluid 

that changes with the application of stress. Here the “roughness” of the water 

and the atmospheric friction velocity change in as little as a few minutes. These 

changes are often described using the well-known equation from Charnock 

(1955)  

 

 z0  m
u*

2

g
 , (2) 

 

where z0  is the surface roughness length of the ocean, g  is acceleration due to 

gravity, and m  is the non-dimensional coefficient known as the Charnock 

Coefficient. Due to the difficulty in measuring   directly, and the need for efficient 

calculation methods for modeling purposes,   is often calculated using easily 

measured or forecast parameters through the bulk formula,  

   

   aCDU
2
 , (3) 

   

where CD  is the drag coefficient and U  is the mean horizontal wind speed at a 

given level within the atmospheric surface layer. According to Monin-Obukhov 
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similarity theory (MOST) (Monin and Obukhov 1954) the stress in the surface 

layer is near constant. None of the terms in equation (3) depend on direction, 

which suggests that   must be aligned with U .  

Numerous studies were performed over the past four and half decades 

with the aim of improving the bulk formula parameterizations (Businger et al. 

1970; Large and Pond 1980; Geernaert 1990; Rieder et al. 1994; Edson et al. 

2013). However, many of these studies assumed that all stress is stream wise 

and neglected any cross-stream stress, in line with MOST. A few recent studies 

however, have found that the stress vector is often not aligned with the stream 

wise wind vector (Potter 2015; Rieder et al. 1994; Geernaert et al. 1988; Zemba 

and Friehe 1987). The difference between these two vectors is referred to as the 

stress angle,  .  

These deviations from MOST can be significant (Zhang et al. 1980) and 

are attributed to various processes such as surface sensible heat flux (Geernaert 

et al. 1988), coastal jets (Zemba and Friehe, 1987), and sea/swell direction 

(Grachev et al. 2003; Geernaert et al. 1993). Rieder and Smith (1998) found that 

wind stress vector was directed away from the mean wind direction and toward 

the wave direction for both swell and wind sea waves. Riechl et al. (2014) found 

that swell moving at an oblique angle to the wind tends to increase the 

misalignment between the wind vector and the stress vector in tropical storms.  

These studies improved our understanding of wind stress and the stress 

angle in the open ocean, and led to improvements in bulk algorithms (Fairall et 

al. 2003) and the use of satellite based scatterometer data, which were shown to 

be sensitive to the stress angle (Liu et al. 2007; Rufenach et al. 1998). Little 

work, however, was done to quantify wind stress or explain the presence of the 

stress angle in the nearshore environment. Two recent exceptions, Shabani et al. 

(2014) and Ortiz-Suslow et al. (2015), highlighted how different this environment 

is from the open ocean. Ortiz-Suslow et al. (2015) utilized a mobile platform to 

perform direct flux measurements in the vicinity of the New River Inlet (NRI) on 
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the North Carolina Coast exploring the relationship between wind stress and 

currents using a mobile platform that enabled measurements to be taken from 

within the inlet to approximately 4000m offshore. The NRI data set measured 

stress angles that were up to  off from the mean wind. Shabani et al. (2014) 

performed direct measurements of wind stress over the surf zone from a fixed 

tower on the beach where a strong relationship between the wind stress and 

cross-shore wind angle existed with significantly less stress associated with 

along shore winds. Both studies found values of  that were about twice that 

found in the open ocean.  

This thesis presents the results of a five-month study of the nearshore 

environment on a Mediterranean beach (Johnson 1977) extending from the 

intertidal zone through the surf zone to the adjacent inner shelf. During this study, 

the eddy covariance method is used to obtain direct measurements of the wind 

stress and buoyancy flux using a portable tripod that was deployed near the high 

tide water line. The results provide a detailed picture of the nature of wind stress 

and the stress angle and stability in the nearshore environment that will hopefully 

lead to improvements in nearshore modeling.  

 

 

 

60

CD
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II. THEORETICAL BACKGROUND 

A. WIND STRESS 

Unlike bulk methods, an eddy covariance system provides direct 

measurements of fluxes. In this application   is defined by the Reynolds shear 

stress 

   a (u 'w ' v 'w ') , (4) 
 

where a  is atmospheric density and u ',v ',w '  are the turbulent fluctuations of the 

wind velocity in the stream wise, cross-stream and vertical axes, respectively. 

The overbar represents that the data are averaged over some appropriate 

period. In the direct method shear velocity is defined as  

 

 u*  u 'w '
2
 v 'w '

2 
1

4
 , (5) 

 

By MOST, the mean wind gradient is related to the friction velocity by 

 

 
U
z


u*

 z
m

z

L






 , (6) 

 

where   0.4 is the von Karman constant, z  is the height above the surface, 

and m  is the dimensionless velocity gradient function that depends on z  and the 

Monin-Obukhov length L , which is defined as 

 

 L  
u*

3Tv

gTv 'w '
 , (7) 

 



 6

where Tv  represents the mean virtual temperature in Kelvin. The sonic 

temperature Ts  is a suitable approximation for Tv  (Kaimal and Gaynor 1991) and 

will be used for calculations in this study. Integrating equation (6) from the 

roughness height z0  to the measurement height z  yields 

 

 U 
u*


ln

z

z0

 m

z

L














  . (8) 

 

The first term in the square bracket in equation (8) is the classic log wind profile 

for neutral stability. The stability function  m  is related to the MOST velocity 

gradient function m  in equation (6), and defines how deviations from neutral 

stability modify the logarithmic wind profile. The velocity gradient m can be 

expressed as in equations (9) and (10) based on Businger et al. (1971) 

 

 m

z

L





 1b

z

L







1

4

 for 
z

L
 0  (unstable)  (9) 

 

 m

z

L





 1 b

z

L
 for 

z

L
 0 (stable). (10) 

 

For this study the values of the coefficients are b  20 and b  5  as in 

Shabani et al. (2014) and Yelland and Taylor (1996). Following Paulson (1970), 

 m  can be expressed in unstable conditions (z / L  0) as 

 

 

 m

z

L





 2 ln

1m
1

2






 ln

1m
2

2






1m

2 tan1 m
1   

2

 .  (11) 
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While for unstable conditions Lo and McBean (1978) have derived that  m can be 

evaluated by 

 

  m

z

L





 1m  5

z

L
 . (12) 

   

 

Stress is often parameterized in terms of the drag coefficient in flux 

calculations from observations as well as in numerical modeling. Rearranging 

equation (3), one can explicitly define drag as 

 

 CDz 


aUz

2 
u*

Uz








2

 , (13) 

 

where the subscript z  denotes the height of the measurement or calculation.  

It is important to be able to compare drag coefficients from various studies 

and model output. However, the dependency of CD  on the thermal stability 

regime makes the comparison problematic. In order to make these comparisons, 

the drag coefficients are normally converted to neutral stability conditions 

following Geernaert et al. (1987) according to 

 

 CDNz  CDz


1

2 
 m

z
L



























2

 . (14) 

 

Since the measurements are not necessary made at the same height 

above the surface it is also common practice to report CDN  in reference to a 
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common altitude, normally 10m using wind input from 10 m. The log wind profile 

is used to relate the wind speeds and drag coefficients between the 

measurement and reference level according to 

 

 
CDNz2

CDNz1


UNz1

UNz2











2


ln

z1

z0

ln
z2

z0

















2

 , (15) 

 

where z1 represents the measurement height and z2  the new reference height, in 

this case 10 m. Equation (15) is only applicable to neutral thermal stability.  

Fluxes obtained using the eddy covariance method also allow for the 

obtaining the stress angle  , the angle between the mean wind vector and the 

wind stress vector as 

 

   (v 'w ' / u 'w ') , (16) 
  

where   0 indicates that the stress and wind vectors are aligned while positive 

(negative) values indicate that the stress vector is directed to the left (right) of the 

wind vector by   degrees.  

Another parameter often associated with eddy covariance measurements 

is the buoyancy flux or sensible heat flux Hs  (Geernaert et al. 1987)  

 

 Hs  acpw 'Ts ' , (17) 

 

where cp  is the specific heat of air at constant pressure. This flux represents the 

flux between the surface and the atmosphere. Positive (negative) indicates the 

surface is a source (sink) for heat energy.  
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III. METHODS 

A. DEL MONTE BEACH 

The study site was located on Del Monte beach, in Monterey, CA. This 

beach is a northwest facing, sandy beach in the topographically sheltered 

southern portion of the Monterey Bay, Figure 1. The slope of the beach ranges 

from 1:14 to 1:40 with predominantly plunging and spilling type breakers 

(Thornton et al. 1976). Tides are mixed with a diurnal range of approximately 2m 

between the highest and lowest tide. The topographic features of the surrounding 

area limit the fetch for significant local seas development to only regimes with 

northerly winds. Pacific Ocean swells undergo wave refraction due to interactions 

with the sandy shelf, which results in swells that are consistently normal to the 

beach (MacMahan et al. 2005). The climate is Mediterranean in nature, 

characterized by the cool California current that moderates the temperatures 

maritime air and the warm dry inland regions, (Johnson 1977). Winds are 

dominated by a daily sea breeze that develop due to strong thermal gradients 

between the relatively cool maritime air and the inland valley due to diurnal 

heating (Hendrickson and MacMahan 2009).  

  



 10

Figure 1.  Field Study Site 

 
Google Earth image of Monterey Bay (a) and Bing Birdseye view of Del Monte 
Beach (b) both with the location of the Surf Flux Tripod deployments marked by 
an “x.” Cross-shore view of study site (c) from March 19, 2015. Pictured are the 
SFT (left), fixed sensor stations (right) and buoy marking the location of the 
offshore temperature and pressure array. 

1. Surf Flux Tripod 

Eddy covariance measurements were obtained during 4 separate 

collection periods from March 16, 2015, to July 16, 2015, using a Surf Flux 

Tripod (SFT) Figure 2, resulting in the collection of 1088 hours of quality 

controlled flux data. Instrumentation included an R. M. Young Model 81000 3D 

Ultrasonic Anemometer, mounted at a height of 1m, two Campbell Scientific 

temperature and humidity probes, located at 1m and 3m, a downward looking 

infrared radiometer to measure the skin temperature of the water/sand directly in 

front of the SFT, and a Kipp and Zone CNR4 net radiometer to measure total 

solar and terrestrial radiation. On April 11, 2015, a second sonic anemometer 

was added at a height of 3m. All sensors were wired to a Campbell Scientific CR 

3000 data logger for initial processing, and data were stored on a 2Gb compact 

flash data card as detailed in Table 1. Power for the SFT was provided by a 12V 

lead acid battery that was housed in a separate waterproof enclosure.  
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Table 1.   Surf Flux Tripod Sensor Suite 

Sensor Height Sample Rate 
RMY81000 Sonic Anemometer (2) 1/3m (3/6 m)* 20 Hz 
Temperature/humidity (2) 1/3m (3/6 m)* 1 Hz 
Down looking radiometer 1.3 m 1 Hz 
CNR4 Net Radiometer 1.6 m 1 Hz 

*4th deployment only. 

As mentioned the system was deployed over four separate collection 

periods. The moves between deployments 1–2 and 2–3 were necessitated due 

to beach erosion. The fourth deployment was to enable the SFT to be 

reconfigured with the sonic anemometers and temperature/humidity sensors at 

3m and 6m. During the study period, the system was inspected daily and was 

cleaned to remove any salt or dirt from the instruments and kelp from around the 

tripod assembly as required. The battery was replaced every 4–5 days at which 

time the data was collected for processing. Specific deployment times locations 

and the reference beach elevation data can be seen in Table 2. 

Table 2.   Deployment Locations/Times 

Deployment Lat Lon Start* Stop* SFC 
re:MSL 

1 36.6034 -121.8729 75.9418 106.5186 2.84m 
2 36.6037 -121.8732 106.5781 125.8262 2.86m 
3 36.6032 -121.8728 127.0052 149.8717 2.87m 
4 36.6034 -121.8730 158.9019 197.0848 2.91m 

*Start and stop times are in Julian/Decimal day UTC 

 

 

 

 



 12

Figure 2.  Surf Flux Tripod 

 
SFT deployed at Del Monte Beach on April 11, 2015. 

2. Ocean Temperature and Waves 

In order to characterize the ocean environment a temperature array was 

deployed approximately 70m offshore in 5m water depth. This array consisted of 

six Onset Tidbit temperature loggers attached to a weighted line with a surface 

float. Sensors were placed on the weight and at 1m intervals to the surface with 

the top sensor housed in a protective solar shield to prevent direct heating from 

the sun. Temperature sensors were initially deployed at a sampling rate of 60s 

but were reconfigured for a 5min sampling rate after the first retrieval. RBR 

pressure sensors (Solo and DR1050) were attached to the bottom weight in 

order to capture wave statistics. Pressure sensors sampled continuously at 1 Hz. 

The temperature sensors were downloaded periodically in the field using a 
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waterproof data shuttle, and pressure sensors were swapped-out during this 

time.  

3. Beach Topography 

A total of 10 walking surveys were conducted of the beach along an 

approximately 100m tract from the dry upper beach seaward out into the surf 

zone, using a high resolution Ashtech GPS system, which has a horizontal 

accuracy of O(1 cm). The surveys were conducted at the start and end of the 

study with additional surveys made after significant changes in beach 

morphology due to storm activity. The National Geodetic Survey (NGS) 

GEOID99 model was used to convert the vertical heights to NAVD88 vertical 

datum. Data were then transformed into a local coordinate system [X, Z] where X 

is directed cross-shore and increases seaward and Z is elevation referenced to 

local Mean Sea Level (MSL) using offsets obtained from the Monterey (MYXC1) 

tidal station (National Oceanic and Atmospheric Administration [NOAA] 2011). 

Using linear interpolation of the survey data, the beach elevation was then 

calculated for the entire study period and a common profile length.  

B. DATA 

1. Eddy Covariance 

Following the methods outlined in Aubinet et al. (2012), the 20 Hz flux 

data from the sonic anemometers underwent quality control checks to remove 

data spikes caused by either instrumentation or natural events. The data 

converted to a shore normal reference frame before being rotated into the mean 

wind direction and a tilt correction was then applied using the planar fit method 

(Paw U et al. 2000; Wilczak et al. 2001) to ensure that the mean vertical velocity 

was equal to zero. Failure to perform the tilt correction can result in biasing of the 

vertical velocity due to upslope enhancement. Once the tilt correction was 

performed, then data were averaged in order to capture the needed statistics for 

use in eddy covariance calculations while still keeping the data averaging small 

enough to represent stationarity in the observations. A 15-minute averaging 
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period was selected for this effort, which is in line with the normal range of 10 to 

30 minutes that have been used in other studies (Aubinet et al. 2012). Flux 

calculations were then made using the averaged and corrected data. Finally, post 

processing filters were applied for wind direction  to ensure there was no 

contamination of the data due to turbulence induced by the tripod and by wind 

speed to remove winds less than 3 m/s for which flux measurements are not 

valid due to the lack of turbulent eddies. Additionally, records where the wind 

speed between the upper and lower anemometers was inconsistent indicating 

potential contamination of data due to stream blockage was eliminated.  

2. Surface Meteorological 

1Hz temperature and humidity data, skin temperature, and net-radiation 

sensor data from the SFT were quality-controlled to remove erroneous spikes. 

These data were also averaged over the same 15min periods as the flux data. 

Atmospheric pressure data was taken from the fixed meteorological station 

located at the Naval Postgraduate School’s beach laboratory approximately 70m 

to the southeast of the study site. Data were reduced to MSL based on Babinet’s 

formula (Smithsonian 1897) and reduced data were used to calculate 

atmospheric density.  

3. Water Level  

For this study we used the verified NOAA water level data from the 

Monterey, CA tidal station located 1500m west of the study site. The verified 

water level data was output in 6min time steps, and were then interpolated to the 

experiment time for use in calculating the cross-shore and stream wise distance 

between the SFT and the water’s edge. Significant sand erosion and deposition 

caused vertical changes in the sand elevation of 1m, Figure 3 (dashed red 

lines). This resulted in the migration of the mean higher high water (MHHW) mark 

on the beach by 20m in the cross-shore direction over the course of the study, 

Figure 3 (dotted blue line).  
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Figure 3.  Beach Profile 

 
The mean beach profile for March through July 2015 is shown by the solid black 
line. Mean high high water and mean low low water levels are indicated by the 
dashed green line. The maximum and minimum observed water levels are 
indicated by the dashed blue line. All elevations are in meters and are referenced 
to local mean sea level. 

C. ORIENTATION 

The spatial and directional attributes of winds, waves, stresses etc., will be 

described using a local coordinate system in reference to the SFT and the 

shoreline. For ease of analysis and description, the angle   0  is defined as 

shore normal from the beach to the ocean with negative values to the left and 

positive values to the right. Wind direction is given in the meteorological 

convention with winds coming from a given angle. Vectors indicate the direction 

of travel (i.e., a wind direction of -90 would indicate wind traveling along shore 

from left to right, parallel with the shoreline). Note that due to wave refraction, 

swells are normally incident to the beach and approach the shoreline on a 

heading of 180. This reference frame represents wind normal to the shoreline as 

well as the incoming waves.  
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IV. RESULTS 

A. FLUX FOOTPRINT 

For any eddy covariance measurements, there exists an upwind area that 

contributes to the properties of the quantities being measured. This area is often 

referred to as the flux footprint. In a completely homogeneous environment, such 

as a vast expanse of ocean or flat unchanging landscape, this is not a large 

issue. In a dynamic environment, where there are significant differences in the 

surface properties near the measurement site, there is a greater need to 

understand what source(s) may be contributing to the measured flux. Many 

researchers have attempted to quantify and provide solutions from computing the 

flux footprint from complex dispersion models to simple analytic solutions (Gash 

1986; Schuepp et al. 1990; Schmid 1993). The goal for the purposes of this study 

is to be able to determine when the measured flux is primarily from over the 

water or the sandy shoreline given the relatively low measurement heights used 

in this study. The simple analytical solution proposed by Schuepp et al. (1990) 

that was implemented by Ortiz-Suslow et al. (2015) was chosen. This method 

allows for the calculation of the area of the footprint that the measurement is 

most sensitive according to 

 

 xmax 
U

u*

z

2
 , (18) 

 

where xmax  is the distance in the stream wise direction from the sensor into the 

wind that has the largest contribution to the flux footprint. Knowing xmax  and the 

cross-shore distance to the water xw in the direction of the mean wind, a footprint 

ratio determines if the footprint is “wet” or “dry” according to 

 

 
xmax

xw

1 Dry   (19) 
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xmax

xw

1Wet  , (20) 

 

with dry indicating that the max contribution comes from over the sandy 

beach/swash zone and wet indicating that the max contribution is from over the 

water. The majority of the footprints for the 3m and 6m heights are over the 

water, 74% and 80% respectively, Figures 4a, 4b, and 4c. However, only 10% of 

the 1m observations are over the water, owing the low elevation, Figures 4a and 

4b.  

Figure 4.  Flux Footprint Ratio 

 

Time series of the ratio of xmax  and xw  for the upper and lower anemometer 

pairs for (a) deployments 1 and 2 (b) deployment 3 and (c) deployment 4. The 
dashed black line on the y-axis indicates a ratio of 1 meaning all observations 
above that line are “wet” while all observations below that line are “dry.” Each 
circle represents 15min of data from 1m (red circles), 3m (blue circles) or 6m 
(green circles). 

  



 19

B. STABILITY 

The non-dimensional stability parameter , from equation (7), 

represents the relationship between thermal and mechanical turbulent mixing in 

the surface layer. z / L  is normally related to the flux of momentum, temperature 

and other scalar parameters through the use of the MOST stability functions. 

Under absolute neutral stability conditions, , development of turbulent 

fluxes are entirely dependent on mechanical shear induced by the flow of the 

wind over the surface. It is under these conditions that the well know log wind 

profile relating the mean wind speed, , and surface roughness, , to 

measurement height is obtained. However, the atmosphere is very rarely in a 

state of absolute neutral stability. During stable conditions, , atmospheric 

stratification works to suppress turbulent fluxes from mixing upward while under 

unstable conditions when  thermal instability and convection work to 

enhance turbulent mixing.  

Studies have generally classified atmospheric stability into three basic 

categories: unstable, near neutral, and stable. Near neutral is often defined as 

 (Smith 1980; Smith et al. 1991; Shabani et al. 2014). Near 

neutral conditions are expected over most of the ocean (Barale et al. 2010). 

However, data from this study suggest something quite different for the 

nearshore environment. The distribution of z / L  measured from 3m and 1m 

during the first 3 deployment periods (Figure 5a) and from 6m and 3m during the 

fourth period (Figure 5b) show that a relatively small amount of the data are 

considered near neutral. In fact, these data are very similar to conditions 

measured over the flat wheat fields during the Kansas experiment of Kaimal et al. 

(1972), which had ranges of 2.1 z / L  3.3. 

 

 

z / L

z / L  0

U z0

z / L  0

z / L  0

0.1 z / L  0.05
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Figure 5.  Stability  Frequency of Occurrence 

 
Stability distribution (a) for deployments 1–3 and (b) for deployment 4. The y-axis 
is frequency of occurrence and data are binned in intervals of 0.5. The data has 
been filtered to include only onshore winds where the foot print, defined by 
equation (18), is over the water. The data has also been filtered for 
10  z / L  2  which fit more than 80% of the data from each anemometer 

height/deployment. Total u*  as defined in equation (5) was used for these 

calculations. 

For each pair of anemometers, the upper elevation is more unstable than 

the lower elevation (Figure 5), consistent with Shabani et al. (2014). The 3m 

data, however, are fairly consistent across the entire study period with only 

slightly more instability during deployment four (Figure 5b, yellow bars). This is 

likely due to deployment four being conducted during the transition between 

spring and summer. This time period experienced warmer water temperatures 

associated with increased down welling short wave radiation due to longer days. 

Compared with Shabani et al. (2014), the stability observations here in Monterey, 

CA, result in more unstable scenarios that Shabani et al. 2014 found in Australia. 

As will be discussed later, this is believed to be associated with the air–ocean 

temperature differences, resulting in discrepancies between these two studies. 

z

L





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The majority of the conditions are found to be unstable range requiring 

further categorization, which if often ignored in other studies. A modified version 

of the three-layer classification system proposed by Kader and Yaglom (1990) is 

applied to further describe the various unstable regimes. The first category, the 

dynamic sublayer, 0.04  z / L  0 , comprises the regime where thermal stability 

and buoyancy effects are relatively small and turbulent production is almost 

entirely driven by mechanical forcing. The next category, called the dynamic 

convective sublayer, 1.20  z / L  0.12 , describes conditions where thermal 

instabilities become significant but do not yet dominate mechanical forcing. The 

final category is the free convective sublayer 2.00  z / L  1.20 , which is 

characterized by a regime that is almost entirely dominated by thermal instability. 

This classification scheme implies that there are transitional layers exist between 

the three explicitly defined sublayers (Bernardes and Dias 2010). There also 

exists stable sublayer where atmospheric stratification suppresses the production 

of mechanical turbulence.  

The distribution of z / L  binned by the Kader and Yaglom classification can 

be seen in Figure 6. For the first set of data from deployments 1–3, 89% of the 

3m and 92% of the 1m measurements fell into the convective sublayers (Figure 

6a). For deployment 4, 88% of the 6m and 95% of the 3m data are described by 

convective sublayer categories (Figure 6b). These measurements indicate that 

the nearshore environment is much more unstable than the open ocean. 

 

 

 

 

 

 



 22

Figure 6.  Kader and Yaglom Stability Classification 

 
Kader and Yaglom stability classification (a) for deployments 1–3 and (b) for 
deployment 4. The y-axis is frequency of occurrence and data are binned in 
according to criteria listed in Table 2. The data has been filtered to include only 
onshore winds where the footprint, defined by equation (18), is over the water. 
The data has also been filtered for 10  z / L  2  which fit more than 80% of 

the data from each anemometer height/deployment. Total u*  as defined in 

equation (5) was used for these calculations and abbreviations are defined in 
Table 2. 

C. BUOYANCY 

Buoyancy flux, Hs , is closely related to stability through the temperature 

covariance term T 'w ' found in both equations (7) and (17). The sign of Hs

indicates the direction of heat energy transfer between the atmosphere and the 

underlying surface. Positive flux associated with heat energy moving up into the 

atmosphere and negative flux indicates that heat energy moving down into the 

water. Air-water temperature differences, T  Ta Tw , provides an estimate of 

the surface layer stability and buoyancy flux (Kara et al. 2005). A positive T , or 

warm air over colder water is associated with increased stability and negative 

buoyancy flux for all deployments, Figure 7. Conversely, a negative T , or cold 

air over warmer water is associated with greater thermal instability and positive 

buoyancy flux. For all deployments, buoyancy flux is seen to increase as 
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negative T  increases. For the 1m sensor height from deployments 1–3, Figure 

7b, the range of values is much smaller that the corresponding 3m sensor, Figure 

7a. This is due to the smaller footprint area, which is a function of height. A 

similar pattern is observed with the 3m sensor from deployment number 4, Figure 

7d, and the 6m sensor, Figure 7c, for the same reason. For all deployments, the 

maximum buoyancy flux is not always associated with the maximum temperature 

difference indicating the other factors are also important in the determination of 

buoyancy flux.  

Figure 7.  Buoyancy Flux ( z / L ) 

 
Buoyancy flux for deployments 1–3 (a) and (b) for and deployment 4 (c) and (d). 
The y-axis is buoyancy flux calculated according to equation (17). The x-axis is the 
temperature difference between the measurement height and the ocean surface 
temperature measured from the off shore array (Ta Tw ). Negative values 

indicate the ocean is warmer than the atmosphere and positive indicates that 
ocean temperatures are colder than the atmosphere. Data are shaded according to 
the stability parameter z / L . The data has been filtered to include only onshore 
winds where the footprint, defined by equation (18), is over the water.  
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Since the temperature covariance is an integral term in both Hs  and z / L , 

it is relatively self-correlating, and requires an evaluation of other independent 

parameters. For the 6m height during the fourth deployment, a comparison of the 

heat flux versus hours of the day, net radiation, and relative humidity show that 

the highest consistent magnitude of buoyancy flux, approximately 45Wm2 , is 

associated with the daytime maximum net radiation, Figures 8a and 8c. The 

ocean continues to be a source of positive Hs  well after sunset, with a nighttime 

maximum of approximately , Figure 8a. The nighttime buoyancy flux is 

also associated with the maximum relative humidity levels, Figure 8b. These 

same patterns were also observed at1m and 3m.  

Buoyancy flux is also a function of the cross-shore distance, xmax . 

Minimum buoyancy flux values are associated maximum cross-shore extent of 

the flux footprint, xmax , Figure 8d. As the footprint moves closer to shore, 

buoyancy flux values increase with the highest values associated with the 

minimum xmax , Figure 8d. This general pattern was also evident in the 1m and 

3m measurements and shows that the surf zone itself is a source of significant 

positive buoyancy flux. 

  

30Wm2
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Figure 8.  Buoyancy Flux versus Various Parameters 

 
Buoyancy flux for the 6m sonic anemometer during deployment 4. The y-axis is 
buoyancy flux calculated according to equation (17). The x-axis is the 
temperature difference between the measurement height and the ocean surface 
temperature measured from the off shore array (Ta Tw ). Negative values 

indicate the ocean is warmer than the atmosphere and positive indicates that 
ocean temperatures are colder than the atmosphere. Data are shaded according 
to (a) hour of the day in local standard time (b) relative humidity at 6m (c) net 
radiation measured by the CNR-4 radiometer and (d) the cross shore distance 
from the tower towards the ocean that corresponds with the foot print calculation 
xmax  from equation (18). The data has been filtered to include only onshore 

winds where the footprint, defined by equation (18), is over the water.  

D. STRESS AND DRAG 

As expected, the total wind stress,  , increases with the wind speed, 

Figure 9a. The measured mean values range from 1.7 to 2.9 times larger than 

the predicted values based on Large and Pond (1981) or Smith (1988) bulk 
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formulas. This is consistent with Shabani et al. (2014) and Ortiz-Suslow et al. 

(2015). Both of these studies found that measured stresses were larger than 

expected from bulk formulas. For CDN , results are mixed with the mean 1m CDN  

slightly lower than Smith (1.08 versus 1.10) and the mean 6m slightly higher 

than Large and Pond (1.39 versus 1.36). The measured-3m drag was 

consistently higher than the either of the predicted values that were compared in 

this thesis with a mean of 1.52 (Figure 9)  

Figure 9.  Wind Stress and Drag Coefficients 

 
Wind stress   (a) and 10m neutral drag (b) as a function of the 10m neutral wind 
speed. The solid black line represents expected open ocean values using Large 
and Pond (1981) as modified by Trebenth et al. (1990) to include winds <4ms. 
The dashed line represents the expected values using Smith (1988). Both   and 

CDN  represent 15min averaged periods of the direct EC data and has been 

filtered to include only data from onshore winds between -80 to +10 degrees 
relative to shore normal.  

Drag coefficients increase for low wind speeds in a similar fashion noted in 

previous studies (Geernaert el al. 1993; Zhu and Furst 2013; Ortiz-Suslow et al. 

2015) and follow the general pattern of the Large and Pond curve (Figure 9b). 

However, the range is quite large almost zero to more than twice the expected 

CDN
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values of 1 to 1.5 103 . This is in agreement with beach observations by Shabani 

et al. (2014)  

E. STRESS DIRECTION 

According to MOST, the stress and wind vectors should be aligned. 

However, it is now widely accepted that over the ocean the vector of   varies 

widely, and is directed across or even opposite the mean wind flow (Grachev et 

al. 2001a). It is also accepted that the direction of the stress lies between the 

wind direction and swell direction (Geernaert et al. 1993; Rieder et al. 1996). 

Since open ocean winds and waves are generally aligned, the difference 

between the wind and swell vectors and the stress angle are relatively small and 

MOST remains valid. In the nearshore environment, however, stress angle can 

be as large as 90 degrees (Ortiz-Suslow et al. 2015).  

For the current study, large deviations of  occur for all sensor heights 

and across all four deployments (Figures 10a–d). This pattern is independent of 

wind speed signifying that the stress angle,  , is function of wind angle relative 

to the shore and swell. For shore normal winds, which are in general alignment 

with the swell direction, the stress angle tends to be positive and directed to the 

left of the wind. This is consistent with Grachev and Fairall (2001b), who also 

found that the stress angle tended to be directed to the left of the wind vector.  
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Figure 10.  Relative Stress Direction ( ) 

 
The magnitude and direction of the wind as measured by sonic anemometers 
deployed at (a) 3m during deployments 1–3, (b) corresponding 1m 
measurements for deployments 1–3, (c) and (d) the 6m and 3m measurements 
taken during deployment 4. The dashed range rings indicate wind speed in 
increments of 3m/s (3,6,9m/s). Directional headings are in the local coordinate 
system where 0 degrees is shore normal from the water. The solid vertical line 
from -90 and 90 is alongshore. The color shading represents  in degrees with 
positive (negative) values of indicating that the wind stress is directed to the left 
(right) of the mean wind vector. 

For on shore winds, the stress, , does not exhibit any directional 

attributes; it is a function of wind speed, Figure 11. Offshore winds and along 

shore winds, most notably for the 6m sensor height, Figure 11c, have higher 

stress values than on shore winds due the roughness of the beach and 

surrounding landscape.  

 
 


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Figure 11.  Stress ( ) 

 
The magnitude and direction of the wind as measured by sonic anemometers 
deployed at (a) 3m during deployments 1–3, (b) corresponding 1m 
measurements for deployments 1–3, (c) and (d) the 6m and 3m measurements 
taken during deployment 4. The dashed range rings indicate wind speed in 
increments of 3m/s (3,6,9m/s). Directional headings are in the local coordinate 
system where 0 degrees is shore normal from the water. The solid vertical line 
from -90 and 90 is alongshore. The color shading represents  . 

For onshore winds, stability ( z / L ) also increases along with the wind 

speed, Figure 12. Near neutral stability is observed with the maximum winds 

Figures 12a and 12b. Along shore winds, which are traveling over the exposed 

beaches encounter the lowest stability values, Figure 12d.  
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Figure 12.  Stability ( z / L ) 

 
The magnitude and direction of the wind as measured by sonic anemometers 
deployed at (a) 3m during deployments 1–3, (b) corresponding 1m 
measurements for deployments 1–3, (c) and (d) the 6m and 3m measurements 
taken during deployment 4. The dashed range rings indicate wind speed in 
increments of 3m/s (3,6,9m/s). Directional headings are in the local coordinate 
system where 0 degrees is shore normal from the water. The solid vertical line 
from -90 and 90 is alongshore. The color shading represents stability parameter 
( z / L ) with positive values indicating stable conditions and negative values 
indicating unstable conditions. 

At times, the footprint of the flux measurements was predominately over 

the sandy beach and swash zone. Additionally, wave conditions varied over time 

as winter storm swells dissipated and gave way to more moderate swells 

associated with summer time high pressure in the eastern pacific. To test the 

impact these could have had on the stress angle,   for the 3m and 6m 

deployment heights, was bin averaged by both relative wind direction and 

significant wave height. Additionally, the data was filtered to include only data 

with a footprint ratio greater than one indicating the readings were predominately 

over the water.  
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The stress angle showed no significant overall dependence on offshore 

height Figures 13 a and 13b. The bin averaged magnitude of  , with over the 

water footprints, was consistent with the initial findings, Figures 10a, 10c, and 

10d. Differences between   calculated for the 6m, Figure 13a, and 3m, Figure 

13b, deployment heights were generally minimal and within 10 for all but the 

alongshore winds where the stress angle was 20greater for 6m. It is believed 

that the similarity exists because of the wave heights are relatively similar owing 

to depth-limited wave breaking. Larger wave heights will result in a wider surf 

zone, but again this does not appear to have a statistically significant influence. 
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Figure 13.  Stress Angle ( ) Sensitivity to Wave Height 

 
Relative stress angle  as a function of wind direction () relative to the swell 
angle and shoreline in the local coordinate system for (a) 6m anemometer height 
during deployment 4 and (b) the 3m anemometer height during all 4 
deployments. Plotted for each height is the mean value in each bin and the mean 
values corresponding with the lower and upper halves of the significant wave 
height distribution as measured just off shore. Note that the mean significant 
wave height for each plot is different owing to different deployment times. Wind 
direction is in the meteorological “from” convention, where wind from 0°, dashed 
vertical line, is directly on shore and winds from -90°, solid vertical line, are along 
shore from left to right. Data are binned 10° increments of  and have been 
filtered to show only onshore winds and where the flux footprint is 
over the water. Error bars represent the 95% confidence interval for each group 
of binned data.  

As   increases, not only does the magnitude of   change but also an 

inflection point exists around   45  where the sign of the stress switches. 

Potter (2015) found similar an inflection point noting that there was up to a 26% 

reduction in CDN  when the angle between wind and swell exceeded 45°. 





80  10
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Likewise, Shabani et al. (2014) found significant reduction in CDN with along 

shore winds for   45  relative to the shoreline. Here, the minimum values for 

CDN  were associated with onshore winds, Figure 14. There is a reduction in CDN  

from its maximum to the along shore value, the drop is not as significant as was 

expected, and in most cases it does not represent the minimum. 

Figure 14.  Neutral Drag (CDN ) versus Wind Direction ( ) 

 
Mean 10m neutral drag (103) as a function of wind direction () relative to the 
swell angle and shoreline in the local coordinate system for each of the eight 
individual anemometer elevation deployments. Wind direction is in the 
meteorological “from” convention, where wind from 0°, dashed vertical line, is 
directly on shore and winds from -90°, solid vertical line, are along shore from left 
to right. Data are binned 10° increments of  and have been filtered to show only 
onshore winds 80  10  where the foot print indicates the measurement is 
for over the water. Error bars represent the 95% confidence interval for each bin.  

The differences in alongshore drag is believed to be dependent upon the 

manner in which u*  was calculated. Bulk calculations of wind stress are 

estimated according to MOST, which states that the stress vector is aligned with 

the mean wind direction. By definition, therefore, the cross-stream component of 

the wind is assumed zero or negligible. Thus, reducing equations (3) and (4) to  

 

   au 'w '  (21) 
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 u*  u 'w '
2 

1

4
 , (22) 

     

effectively reducing the magnitude of the stress, the stability functions, and 

ultimately the drag coefficient CDN . Vickers et al. (2013) noted that many studies, 

even using direct measurements, do not provide specific details on their use of 

stream wise versus total stress components in the calculation of CDN . To explore 

this, drag coefficients were calculated using both total and stream wise u*  

following Vickers et al. (2013).  

As expected, CDN  calculated using the total  was higher than stream 

wise , Figure 15. It was also expected that the maximum sensitivity would 

correspond to the maximum values for . Surprisingly, the opposite was true. 

For all deployments, the maximum difference between the two methods, from 

0.25 to 0.65, occurred in the bin centered on . This is where  is a 

minimum, Figure 13. Additionally, when the winds are shore normal, and  is 

between 10°–20° to the left of the wind vector, there is no significant difference 

between the two drag calculations.  

  

u*

u*



  45 

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Figure 15.  Drag Sensitivity to Total versus Streamwise Stress 

 
Calculations of the mean 10m neutral drag (103) as a function of wind direction 
() relative to the swell angle and shoreline in the local coordinate system for the 
upper and lower anemometers for deployments 2 (a) 3 (b) and 4 (c). Circles 
represent drag calculated using the total u*  as defined in equation (5) and 

triangles represent drag calculated using the stream wise u*  as in equation (21). 

Wind direction is in the meteorological “from” convention, where wind from 0°, is 
directly on shore and winds from -90° are along shore from left to right. Data are 
binned in 10° increments of  and have been filtered to show only onshore winds 
80  10 . Error bars represent the 95% confidence interval for each bin.  

Wave height Hw also influences stress and drag calculations in bulk 

formulas and is used to parameterize the surface roughness and drag 

calculations over the open ocean (Taylor and Yelland 2001) as part of wave 

steepness. Wave steepness is defined as Hw /   , where   is the wavelength. 

As waves grow and accelerate, the wavelengths become longer and the 

steepness and drag decrease. Conversely, as waves approach the shore and 

decelerate,   becomes shorter and the steepness and drag increase. Shabani et 

al. (2014) theorize that an apparent decrease in wave steepness could explain 

the decrease in CDN  with along shore winds. This apparent wave steepness is 

caused by a stream wise increase the distance between wave crests when the 

wind travels at an oblique angle to the waves.  
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To test the sensitivity of the measured drag to wave height CDN  was bin 

averaged by both relative wind direction and significant wave height. Additionally, 

observations were filtered to include only conditions when the footprint ratio 

greater than one (indicating the readings were predominately over the water). For 

the 6m sensor,  increased as the wind angle increased, Figure 16a. Also, 

there was some sensitivity to the wave height; however, it was not statistically 

significant at the 95% confidence level. This is likely due the low range of 

significant wave heights observed, less than 1m. The 3m sensor, which covers 

nearly the entire study period, does show a noticeable decrease in  as winds 

become more alongshore, Figure 16b. However, the alongshore values are 40% 

higher than the on shore values, and apparent wave steepness does not seem to 

be factor. For 66% of the direction bins, there is a statistically significant 

difference in  between higher and lower wave heights for the 3m sensor, 

Figure 16b.  

  

CDN

CDN

CDN
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Figure 16.  Drag Sensitivity to Wave Height 

 

CDN  as a function of wind direction () relative to the swell angle and shoreline in 

the local coordinate system for (a) 6m anemometer height during deployment 4 
and (b) the 3m anemometer height during all 4 deployments. Plotted for each 
height is the mean value in each bin and the mean values corresponding with the 
lower and upper halves of the significant wave height distribution as measured 
just off shore. Note that the actual wave height breakpoint for each plot is 
different owing to different deployment time frames. Wind direction is in the 
meteorological “from” convention, where wind from 0°, dashed vertical line, is 
shore normal, on shore flow and winds from -90°, solid vertical line, are along 
shore from left to right. Data are binned 10° increments of  and have been 
filtered to show only onshore winds 80  10  where the flux footprint is over 
the water. Error bars represent the 95% confidence interval for each group of 
binned data.  
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V. CONCLUSIONS 

An extensive study was performed on a sandy dissipative beach to 

explore the complex interactions of the solar cycle, nearshore waves/surf and air-

ocean temperature differences. An eddy covariance Surf Flux Tripod was 

developed and deployed in the intertidal zone for this purpose, and resulted in 

the collection of 1088 hours of quality controlled flux data over the five-month 

duration. 

The wind stress angle   was found to be highly dependent on the 

wind/swell crossing angle   and independent of the stress magnitude, stability or 

significant wave height. It was shown that, in general,   was positive for 

0    45  and the wind stress was directed to the left of the wind vector and 

that   was negative for 45    80  and wind stress was directed to the right 

of the wind vector.  

There was a marked decrease in the alongshore stress was not observed. 

Believing that this could be due to differences in the method used to calculate the 

friction velocity u* , a sensitivity analysis was performed. The neutral drag 

coefficient CDN  was calculated using both total u*  as in equation (5) and stream 

wise only u* , as in equation (22). It was found unexpectedly that when winds and 

waves are in general alignment, as would be typical over the open ocean, there 

was no significant difference between the two different drag coefficients. The 

maximum difference was seen when the wind angle, relative to the swell 

direction was 45
,where the stress and wind vectors are most closely aligned.  

An analysis of the stability of the nearshore environment was also 

undertaken. The nearshore environment was found to be almost always 

unstable, with greater than 88% of all measurements being considered 

convectively unstable. This is a stark difference to what has been seen in the 

open ocean where conditions are almost always near neutral. This was in part 

due to persistent nighttime air-sea temperature differences, which promoted 
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positive buoyancy flux readings well into the nighttime hours. Buoyancy flux was 

examined as a function of the cross-shore flux footprint distance, xmax . Buoyancy 

flux decreased for all air-sea temperature difference ranges and all deployment 

heights as xmax increased. This indicates that the more turbid surf zone produces 

considerably more buoyancy flux than ocean does just off shore where the 

buoyancy flux values decrease significantly and become negative. 
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